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1. Introduction

Question 1.1

Let A be a Gorenstein ring with dimA > 0. How many non-principal ideals I of A
such that htA I = 1 and A/I is Gorenstein exist?

Let

(A,m) a CM local ring with d = dimA ≥ 0

I an m-primary ideal of A.

Recall that

I is Ulrich
def⇐⇒ (1) grI (A) =

⊕
n≥0 I

n/I n+1 is CM with a(grI (A)) = 1− d

(2) I/I 2 is A/I -free. (Goto-Ozeki-Takahashi-Watanabe-Yoshida)

When I contains a parameter ideal Q as a reduction (i.e., I r+1 = QI r for ∃r ≥ 0),

I is Ulrich ⇐⇒ I 6= Q, I 2 = QI , and I/Q is A/I -free

because of 0→ Q/QI → I/I 2 → I/Q → 0.
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Then I/Q ∼= (A/I )⊕(n−d), where n = µA(I ). Hence

(n − d) · r(A/I ) = rA(I/Q) ≤ r(A/Q) = r(A)

so that d + 1 ≤ µA(I ) ≤ d + r(A).

Fact 1.2 (GOTWY, Goto-Takahashi-T)

A is Gorenstein ⇐⇒ µA(I ) = d + 1 and A/I is Gorenstein

provided that Ulrich ideal I exists.

Question 1.3

Let R = k[H] be a semigroup ring of a numerical semigroup H over a field k .
Suppose R is Gorenstein. Can we estimate

#{I | I is a graded ideal of R , R/I is Gorenstein, andµR(I ) ≥ 2}?
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2. Main theorem

N = {n ∈ Z | n ≥ 0}

H a numerical semigroup, i.e., a submonoid of N with #(N \ H) <∞

c(H) = min{n ∈ Z | m ∈ H for ∀m ∈ Z with m ≥ n}

k a field

R = k[H] = k[th | h ∈ H] ⊆ k[t]

XR = {I | I is a graded ideal of R , R/I is Gorenstein, andµR(I ) ≥ 2}

Note that

R is a CM graded domain with dimR = 1, a(R) = c(H)− 1, and R = k[t].

R is Gorenstein ⇐⇒ H is symmetric (Herzog-Kunz)
def⇐⇒ #{n ∈ H | n < c(H)} = #(N \ H)

⇐⇒ #(N \ H) = c(H)
2 .
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Recall XR = {I | I is a graded ideal of R , R/I is Gorenstein, andµR(I ) ≥ 2}.
Note that a = a(R) 6= a(R/I ) for ∀I ∈ XR .

Theorem 2.1 (Main theorem)

Suppose that R is Gorenstein. Then the following assertions hold true.

(1) N \ H 1:1←→ {I ∈ XR | a(R/I ) < a}, m 7→ R :R tm.

(2) {I ∈ XR | a(R/I ) > a} 1:1←→ {I ∈ XR | a(R/I ) < a}, I 7→ ta−a(R/I )I .

(3) XR = {R :R tm, tm(R :R tm) | m ∈ N \ H}.

In particular, #XR = c(H).

Remark 2.2

There exists a one-dimensional local Gorenstein numerical semigroup ring A with
infinite residue class field (e.g., Q[[t3, t7]], C[[t4, t5, t6]]) admitting infinitely
many two-generated Ulrich ideals.
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Let

(A,m) a Gorenstein complete local domain with dimA = 1 s.t. A/m is
algebraically closed

v(A) = {o(f ) | 0 6= f ∈ A} the value semigroup of A

n the maximal ideal of the DVR A.

For ∀ℓ ∈ Z, we set Fℓ = nℓ ∩ A. Then F = {Fℓ}ℓ∈Z is a filtration of ideals in A.

Define
G = G (F) =

⊕
ℓ≥0

Fℓ/Fℓ+1
∼= (A/m)[v(A)]

because, for each ℓ ≥ 0, Gℓ 6= (0) if and only if ℓ ∈ v(A).

Corollary 2.3

The equality

# {I | I is a graded ideal of G , G/I is Gorenstein, and µG (I ) ≥ 2} = c(v(A))

holds.
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3. Examples

Theorem 2.1 (Main theorem)

If R = k[H] is Gorenstein, then XR = {R :R tm, tm(R :R tm) | m ∈ N \ H}.

Example 3.1

(1) Let H = 〈2, 2ℓ+ 1〉 (ℓ ≥ 1). Then c(H) = 2ℓ, and

XR = {(t2, t2ℓ+1), (t4, t2ℓ+1), . . . , (t2ℓ, t2ℓ+1),

(t2ℓ+1, t4ℓ), (t2ℓ+1, t4ℓ−2), . . . , (t2ℓ+1, t2ℓ+2)}.

Indeed, since N \ H = {1, 3, 5, . . . , 2ℓ− 1}, we have

R :R t2ℓ−1 = (t2, t2ℓ+1), t2ℓ−1(R :R t2ℓ−1) = (t2ℓ+1, t4ℓ)

R :R t2ℓ−3 = (t4, t2ℓ+1), t2ℓ−3(R :R t2ℓ−3) = (t2ℓ+1, t4ℓ−2)
...

R :R t = (t2ℓ, t2ℓ+1), t(R :R t) = (t2ℓ+1, t2ℓ+2).

0 1

2 3

4 5
...

...

2ℓ−2 2ℓ−1

2ℓ 2ℓ+1
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Example 3.2

(2) Let H = 〈3, 4〉. Then c(H) = 6 and

XR = {(t3, t4), (t4, t6), (t3, t8), (t8, t9), (t6, t8), (t4, t9)}.

(3) Let H = 〈3, 5〉. Then c(H) = 8 and

XR = {(t3, t5), (t5, t6), (t3, t10), (t5, t9), (t10, t12), (t9, t10), (t5, t12), (t6, t10)}.

(4) Let H = 〈n, n + 1, . . . , 2n − 2〉 (n ≥ 4). Then c(H) = 2n and

XR = {(tn, tn+1, . . . , t2n−2), (tn+1, tn+2, . . . , t2n−2, t2n)}∪
{(tn, tn+1, . . . , tn+i−1, tn+i+1, . . . , t2n−2) | 1 ≤ i ≤ n − 2}∪
{(t3n−1, t3n, . . . , t4n−3), (t2n, t2n+1, . . . , t3n−3, t3n−1)}∪
{(t2n−i−1, t2n−i , . . . , t2n−2, t2n, . . . , t3n−i−3) | 1 ≤ i ≤ n − 2}.
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Thank you for your attention.
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